Higher-order accurate numerical solution of unsteady Burgers' equation
نویسندگان
چکیده
Higher-order accurate finite-difference schemes for solving the unsteady Burgers’ equation which often arises in mathematical modeling used to solve problems in fluid dynamics are presented. The unsteady Burgers’ equation belongs to a few nonlinear partial differential equations which has an exact solution, and it allows one to compare the numerical solution with the exact one, and the properties of different numerical methods. We propose an explicit finite-difference scheme for a numerical solution of the heat equation with Robin boundary conditions. It has a sixth-order approximation in the space variable, and a third-order approximation in the time variable. As an application, we developed numerical schemes for solving a numerical solution of Burgers’ equation using the relationship between the heat and Burgers’ equations. This scheme has up to sixth-order approximation in the space variables. The main advantage of our approach is transition to onedimensional equation which essentially reduces the computation costs compared to other direct methods for solving the unsteady Burgers’ equation. The numerical results of test examples are found in good agreement with exact solutions for a wide range of Reynolds number and confirm the approximation orders of the schemes proposed. 2014 Elsevier Inc. All rights reserved.
منابع مشابه
Reduced Basis Approximation and A Posteriori Error Estimation for the Time-Dependent Viscous Burgers Equation
In this paper we present rigorous a posteriori L2 error bounds for reduced basis approximations of the unsteady viscous Burgers equation in one space dimension. The key new ingredient is accurate solution–dependent (Online) calculation of the exponential–in–time stability factor by the Successive Constraint Method. Numerical results indicate that the a posteriori error bounds are practicable fo...
متن کاملHigher-Order Numerical Solution of Two-Dimensional Coupled Burgers’ Equations
We proposed a higher-order accurate explicit finite-difference scheme for solving the two-dimensional heat equation. It has a fourth-order approximation in the space variables, and a secondorder approximation in the time variable. As an application, we developed the proposed numerical scheme for solving a numerical solution of the two-dimensional coupled Burgers’ equations. The main advantages ...
متن کاملThe Eulerian–Lagrangian method of fundamental solutions for two-dimensional unsteady Burgers’ equations
The Eulerian–Lagrangian method of fundamental solutions is proposed to solve the two-dimensional unsteady Burgers’ equations. Through the Eulerian–Lagrangian technique, the quasi-linear Burgers’ equations can be converted to the characteristic diffusion equations. The method of fundamental solutions is then adopted to solve the diffusion equation through the diffusion fundamental solution; in t...
متن کاملNumerical solution of non-planar Burgers equation by Haar wavelet method
In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve the non-planar Burgers equation. The quasilinearization technique is used to conveniently handle the nonlinear terms in the non-planar Burgers equation. The basic idea of Haar wavelet collocation method is to convert the partial differential equation into a system of algebraic equations that involves a ...
متن کاملHigh Order Finite Differencing Schemes and Their Accuracy for CFD
This paper investigates different high order finite difference schemes and their accuracy for Burgers equation and Navier-Stokes equations. On a coarse grid, theoretical and numerical analysis indicate that a higher order difference scheme does not necessarily obtain more accurate solutions than a lower order scheme in the regions of high gradient variation (2nd order derivative). On a coarse g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 250 شماره
صفحات -
تاریخ انتشار 2015